
ON TEE EVALUATION OF OPTIMAL PARAMETERS OF 
A DRY-FRICTION DAMPER 

(K RASCHETU OPTIMAL'NYKH PARAMETBOV 
DEMPFERA SUKHOGO TRENIIA) 

PMM Vo1.25, No.4, 1961, pp. 798-800 

M. I. FEIGIN 
(Gor’ki) 

(Received April 24. 1961) 

The evaluation of the optimal parameters of a dry-friction damper for a 
model with half a degree of freedom under the assumption that the damp- 
ing system undergoes a sinusoidal motion was given in [ l-3 I. 

In this paper the author gives an evaluation of the optimal parameters 
of a dry-friction damper and computes the energy dissipated by the damper 
during one period of oscillation (energy capacity of the damper) for a 
model which is a nonautonomous system with one-and-a-half degrees of 
freedom. A comparison of the energy capacity at resonance frequencies 
for various values of the frictional force shows that to an optimal 
adjustment of the damper there corresponds a minimum of the dissipated 
energy. 

1. We shall make use of the results of the investigation of a dry- 
friction damper given in [ 4 1 by the method of point transformations. 
Figure 1 shows the mathematical model which was used in the indicated 
work. It consists of an elastically (with the elastic constant k) 
attached mass M, which is acted upon by an external force F sinQ t. The 

interaction of the mass I of the 
damper with the mass M is due 

iFsinPtl M WY w entirely to the force of dry 
[Coulomb 1 friction a. Let x = 0 

correspond to the undeformed state 
of the spring. Excluding from our 

Fig. 1. consideration the simultaneous 

motion of the masses without relative 
sliding, we have the following equation of motion for the model: 

Let us now introduce dimensionless variables in Equation (1) 
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Then we obtain the equations 

f+w2c = sin z + 3 sgn ($ -e), pL;i - - /3 sgn (i -g) 
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(2) 

(3 

in which the dimensionless parameters are given by 0 

p=@lF, co2 = k / 1\!ts2~, p = ,,, / M. (4) 

I f  the solution t(r) of Equation (3) which corresponds to a motion of 

period 277 is expanded into a Fourier series, then one obtains an ex- 
pression for the first and higher harmonics: 

Y12 = (&--1)2 I {i+~[l+X(W.~ol)(~+tan~)l} 

y 2 = _ - ! !K 
n dn2 (02 - r&*)2 (n = 3. 6. 7. ) 

(5) 

(6) 

Expressions (5) and (6) are valid in the region where the considered 

motion exists and is stable. This region includes the values of the 
parameters p, o, and /A satisfying the inequality 

We shall determine the optimal parameters of the damper by investi- 
gating the amplitude of the first harmonic, and by estimating the 
measure of the nonsinusoidal nature of the function t(r) on the basis 
of the distortion factor 

If  one fixes the value of the frictional force @ and the mass p of 
the damper, then the dependence of the amplitude of the damped oscilla- 
tions on the frequency,. i.e. the function \yl(o), will be given by a 
curve with a maximum at some resonance frequency w= c.P. If  one varies 
p, then cP changes and so does the amplitude \Y,(o*) for the resonance 
frequency. To the optimal frictional force &, there corresponds the 
minimum amplitude VI(&) min. In the upper parts of Fig. 2 (/A = 0. l), 

and of Fig. 3 (p = 0.5), there are presented two families of the de- 

pendences \vl(o) for various values of p. The figures show that as p in- 
creases, the maximal amplitude Yl(o*) of the first harmonic first de- 
creases and then increases. The value & corresponds to the case when 
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Fig. 2. Fig. 3. 

the maximum of the curve coincides with the common point of intersection 
of the curves of the family. The coordinate oO of the mentioned common 
point is equal to the resonance frequency of the system with the optimal- 
ly adjusted damper. From Expression (5), it follows directly that o,, is 
given by the equation 

The optimal frictional force & can be found from the condition that 
the curve TV,(o) has a maximum at the point oO. By differentiating v,(o), 
and making a number of transformations with the aid of (8). we arrive at 
the following equation: 

p”=o” [(al”, - I+ +ta”.2 y, - f (02 + l)]-“2 

Using (7) one can convince oneself that for practical, applicable 
values of /J the quantities oO and p,, will belong to the region of the 
periodic motion under consideration. 

The optimal amplitude of the first harmonic at resonance frequency o,, 
obtained from Equation (5) is equal to 
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An estimate of the nonsinusoidal nature of the function t(r) at & 
and o,, yields 

x2 = 2.83 IO-” for p = O:l, x2 = 6.59 IO-* for p = 0.5 

The evaluation of the optimal parameters on the basis of the first 
harmonic has thus been shown to be justified. 

In the case when p << 1, one can expand Expressions (8) to (10) in 
power series in terms of Ao = CL) - 1, and one may neglect terms contain- 
ing Ao to a degree higher than the first. One thus obtains 

In accordance with the results of [ 4 1 , the energy capacity of the 
damper in the case under consideration is equal to 

In the lower part of Figs. 2 and 3 there are given the families of 
curves E@, o, p) computed on the basis of Formulas (12) for the values 
p = 0.1 and p = 0.5. Each of the curves attains a maximum value EL at 
the same resonance frequency a* as does ~)~(a). As p changes, so do a* 
and E*. A comparison of the energy capacity for various frequencies cor- 
responding to different values of p shows that for the optimal adjust- 
ment of the damper p, corresponds to the minimum dissipated energy. 

2. The last result has the following physical meaning. If the damped 
oscillations are nearly sinusoidal, then the work done by the disturbing 
force on the resonance frequency during one period of oscillation is 
approximately equal to nFx,,. where F is the amplitude of the disturbing 
force, while x,, is the amplitude of the damped oscillations. During the 
stabilized forced oscillations, this work is equal to the energy capa- 
city of the damper. This shows that for the minimum value of the re- 
sonance amp1 i tude x,,, the energy dissipated by the damper will also be 
a minimum. 
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